Develop your custom Photonic Integrated Circuit for Data Centers

Dr. Katarzyna ŁAWNICZUK VP, Bright Photonics BV, Netherlands

virtual conference session: Data Center Interconnects – Towards Mass Manufacturing

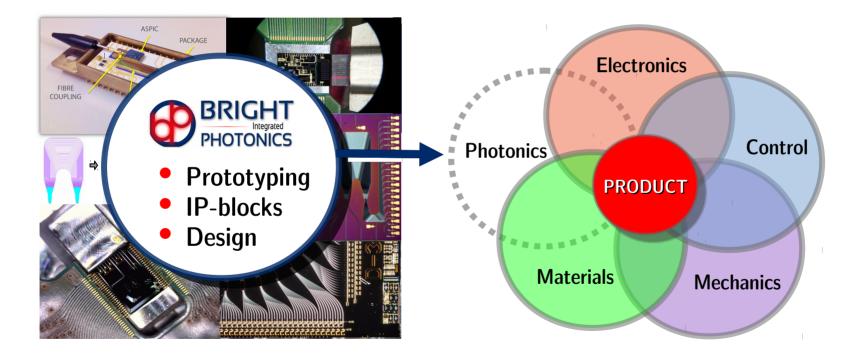
online / October 6th 2020 / 4 – 7pm

Develop your custom Photonic Integrated Circuit for Data Centers

Technology selection and design & validation

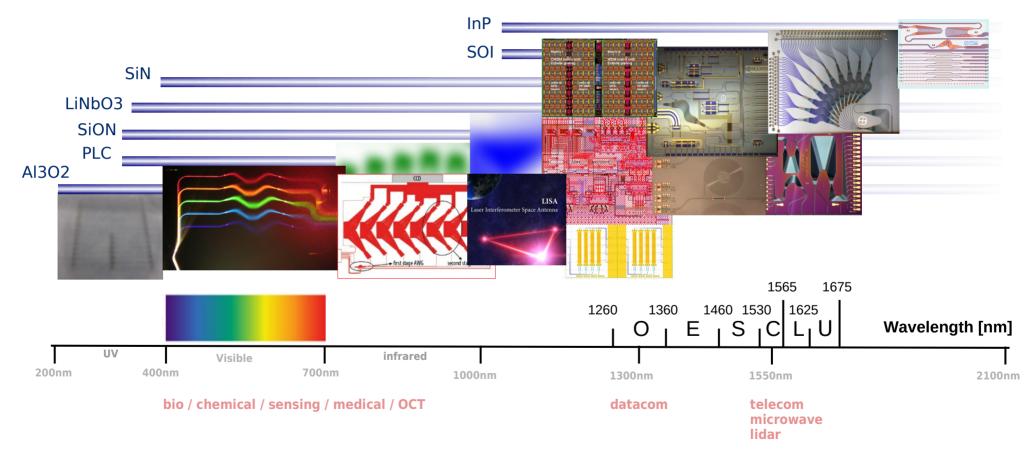
Katarzyna Ławniczuk k.lawniczuk@brightphotonics.eu

Photonics Days 2020 – Berlin Brandenburg 6 October 2020


www.brightphotonics.eu

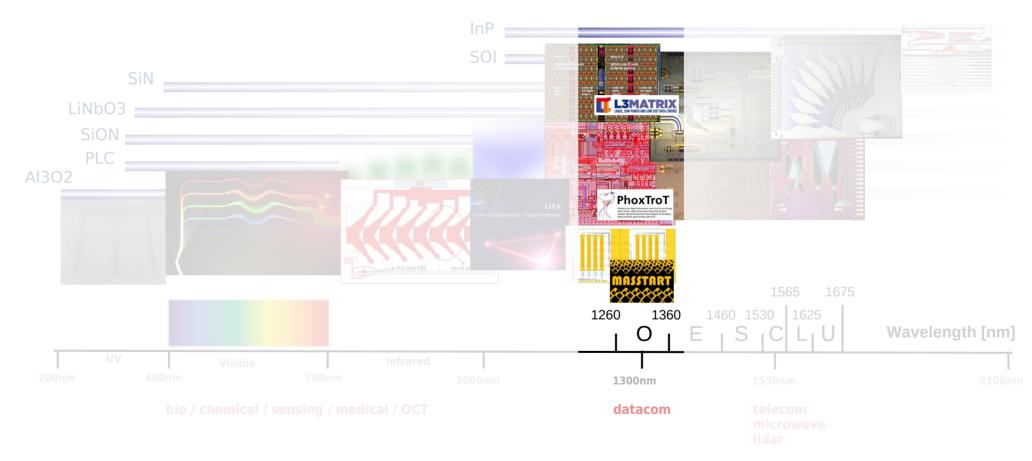
BRIGHT Photonics B.V. (C)

About BRIGHT Photonics:


Empowering products with photonic engineering

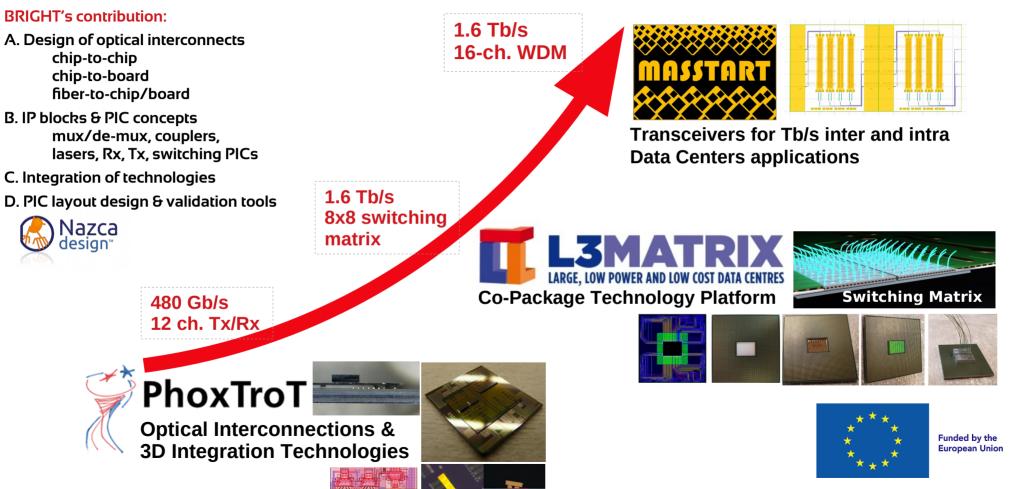
About BRIGHT Photonics:

Design across wavelengths from UV to IR



3

About BRIGHT Photonics:



Design across wavelengths from UV to IR

Development beyond 400G in EU projects

BRIGHT Photonics B.V. (C)

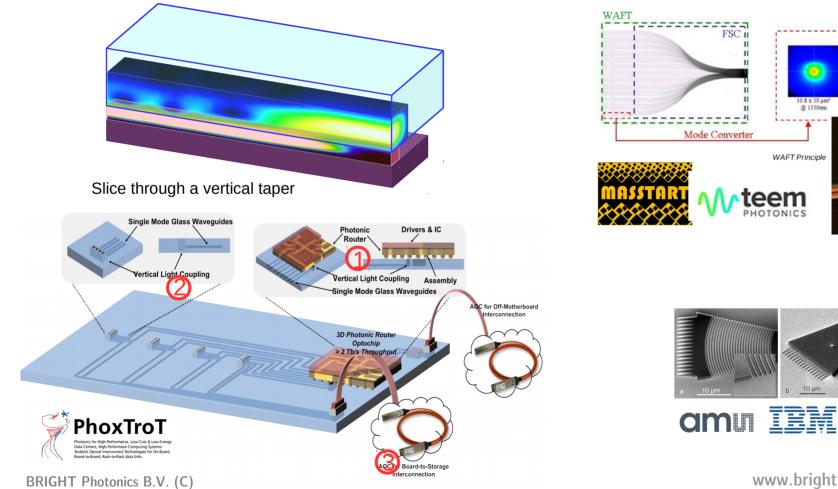
5

4.1 x 3.1 μm² @ 1550nm

Tapered

waveguide

10.8 x 10 µm

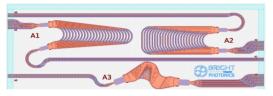

@ 1550nm

10 µm

Confined

waveguide

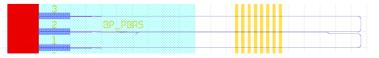
A. Optical interconnects


www.brightphotonics.eu

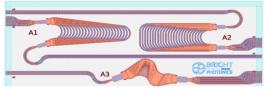
6

B. IP-blocks and PIC concepts

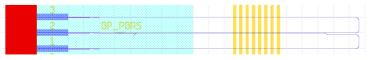
• Commercial MUX and DeMUX components


• Lasers (O-band, C-band)

• Spot-size converters


• Polarization handling devices

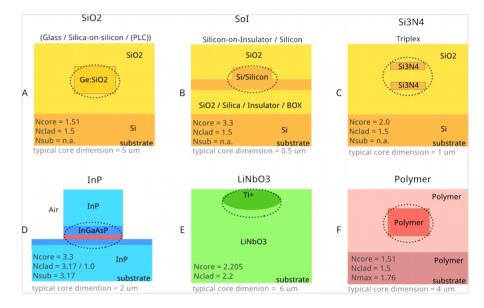
B. IP-blocks and PIC concepts


• Commercial MUX and DeMUX components

- Lasers (O-band, C-band)
- Spot-size converters

• Polarization handling devices

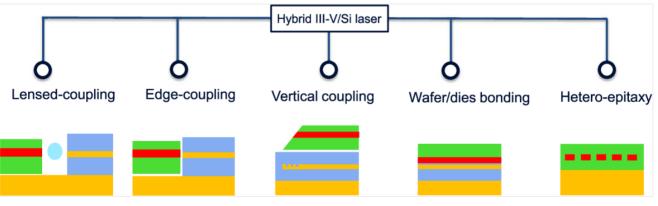
			أستنبط أستنبطة	والمنصور المستبيدات
NEL 1938 1833 1938			🕮 🖃 🏙 🕮	
Matrix I		Matrix II		100 100
CWDM m	atrix with	🗖 🗧 WDM m	atrix with	
Echelle g	rating	Echelle	grating	
ANDA ANDA ANDA ANDA				
		AMZI		
in the switch		tests units w		ts-w/ DBR assives tests
DFB	FP-DBR	DFB		DBR
lasers	lasers	lasers	lase lase	ers 🚺 🦉
	a a salat salat salat salat s		alah ini ini adasi saba	select select


L3Matrix: switching matrix

8

C. Integration technologies: combining (low-loss) passives and actives

→ monolithic vs. hybrid integration

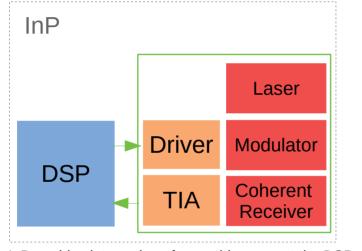

Variety of material platforms

9

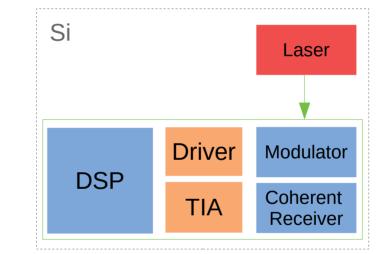
C. Integration technologies: combining (low-loss) passives and actives

- → monolithic vs. hybrid integration
- → hybrid III-V/Si laser integration

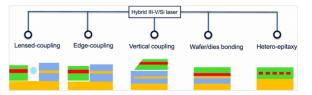
G. de Valicourt et al., JLT, 36 (2) 2018.



C. Integration technologies: Transceivers always combine InP and Si


CMOS

SiGe

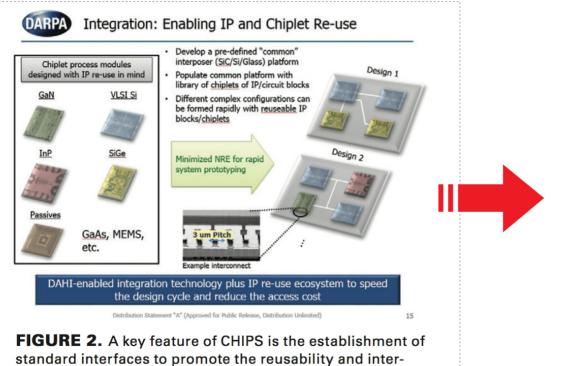

InP

InP enables integration of everything except the DSP

Si enables integration of all electronic and photonic components except the laser

C. Integration technologies: comparison

		InP (generic integration)	SiP with external lasers	Heterogeneous integration (SOI)	Epitaxial growth on Si
Technical	Optical loss		0.1 dB LETI (rib)		
	Active/lasers coupling	0.1 dB butt-join	2-8 dB chip-to-chip	0.5 dB taper loss	0.1 dB butt-join
	Photodiodes				
	Mux/DeMUX				
	Polarization Control				
	Electronics integration				
Production	III-V substrate	1	~	1	-
	III-V growth	1	~	1	1
	SOI/Si substrate	-	1	1	1
	Footprint	High index contrast in 1D	High index contrast in 2D	High index contrast in 2D	High index contrast in 2D
	Yield		CMOS level		
Economic	Substrate cost (\$/cm²)	4.5	0.2	1.5	0.2
	Assembly costs	Fiber coupling	Laser coupling	III-V bonding	Fiber coupling
	Testing	Wafer level	Lasers, SiP	Wafer level	Wafer level
	Wafer size/scaling up	100 mm		300 mm	
Foundries / Product owners		Smart Photonics, Fraunhofer HHI / Infinera, Finisar	VTT, LETI, imec / Luxtera, Rockley	LETI, imec, TU/e - IMOS / Intel	Under research AIM, imec


C. Integration technologies: comparison

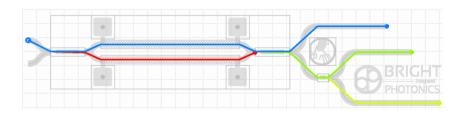
		InP (generic integration)	SiP with external lasers	Heterogeneous integration (SOI)	Epitaxial growth on Si
Technical	Optical loss		0.1 dB LETI (rib)		
	Active/lasers coupling	0.1 dB butt-join	2-8 dB chip-to-chip	0.5 dB taper loss	0.1 dB butt-join
	Photodiodes				
	Mux/DeMUX				
	Polarization Cont				
	Electronics integr	Applicat	ion / Spec		
Production	III-V substrate	Volume	ion / Spec	~	-
	III-V growth			~	1
	SOI/Si substrate	Yield		1	1
	Footprint	Cost		th index contrast in 2D	High index contrast in 2D
	Yield			CMOS level	
Economic	Substrate cost (\$/cm2)	4.5	0.2	1.5	0.2
	Assembly costs	Fiber coupling	Laser coupling	III-V bonding	Fiber coupling
	Testing	Wafer level	Lasers, SiP	Wafer level	Wafer level
	Wafer size/scaling up	100 mm		300 mm	
Foundries / Product owners		Smart Photonics, Fraunhofer HHI / Infinera, Finisar	VTT, LETI, imec / Luxtera, Rockley	LETI, imec, TU/e - IMOS / Intel	Under research AIM, imec

C. Integration technologies: Moving towards complex modular systems

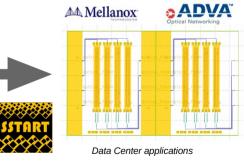
changeability of modular circuit functional blocks or chiplets.

Beyond 50000G?

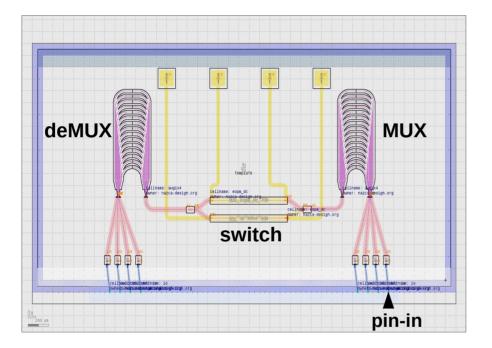
50 GHz bandwidth x 2 symbols per period x 4 bits per symbol (16QAM) x 8 lanes x 8 wavelengths x 2 polarizations


= 51.2 Tb/s

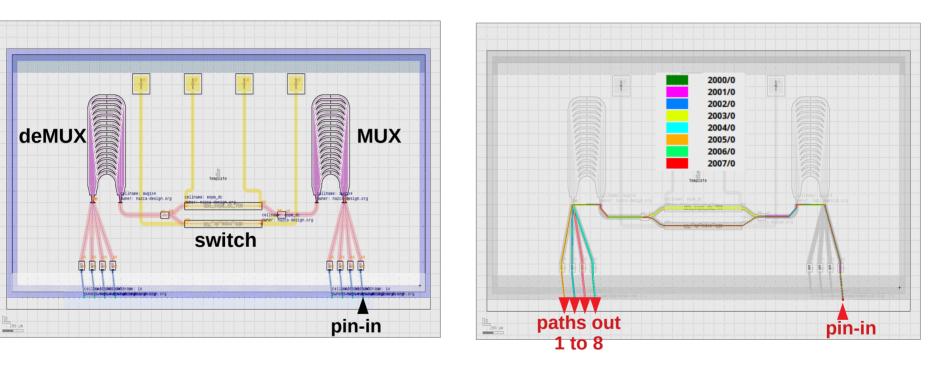
D. Design and validation with Nazca-Design



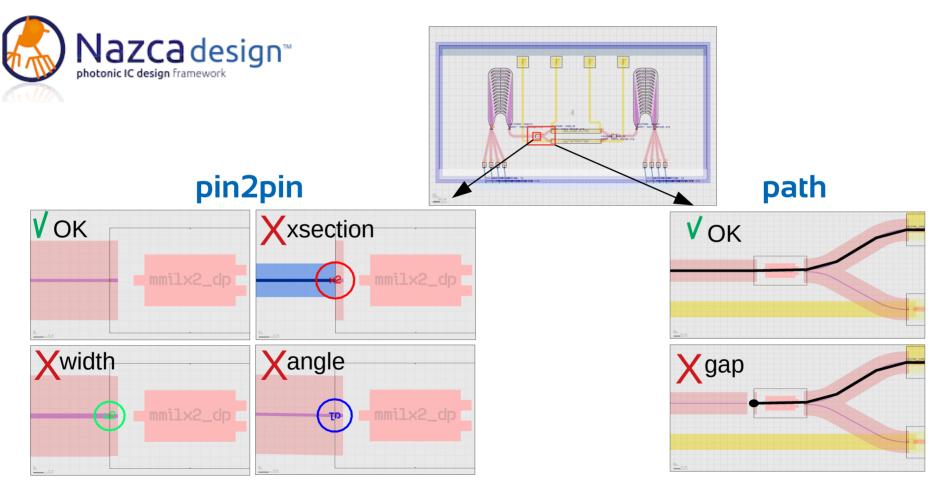
- Combine multiple technologies Hybrid design
 - ➔ Si-Photonics, III-V, Glass
 - ➔ Develop PDK, define and separate technology layers: layers mapping
- Exchange IP Building Blocks IP protection
 - ➔ Combine files and create libraries with GDS BBs, cells mapping
 - → IP BBs handling, work with GDSII standard
 - ➔ Facilitated GDSII files scaling and proper accuracy
- ✓ Solve complex routing and DRC
 - Create interconnects and routing for circuits connectivity with error-free implementation & DRC on connectivity
 - ➔ Path tracing for circuit integrity
- Facilitate new generation of assembly, coupling and packaging approaches
 - ➔ Create packaging rules, packaging templates,
 - ➔ Import fiducials, drivers, tias



import PDK
import IP BBs
import Packages
import nazca
import leti
import teem
import izm
import ficontec
import bright


D. Design and validation in GDS

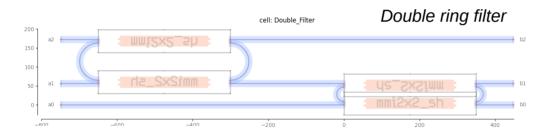
D. Design and validation in GDS: path tracing

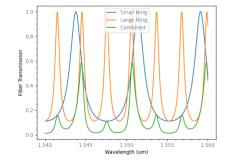


www.brightphotonics.eu

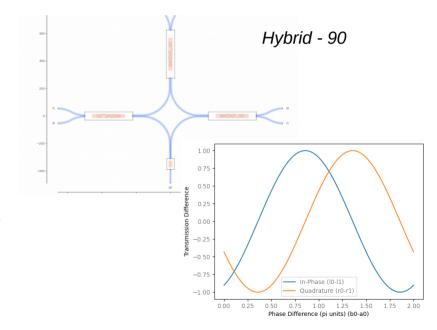
BRIGHT Integrated PHOTONICS

D. Design and validation in GDS: connection DRC



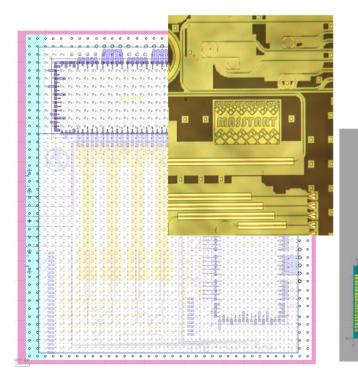

18 BRIGHT Photonics B.V. (C)

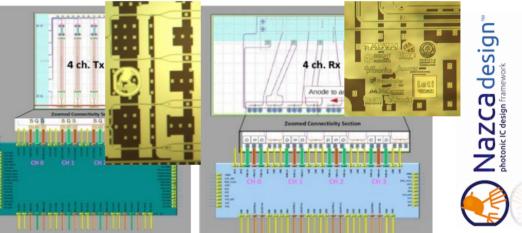
D. Design and validation in GDS: circuit simulation and verification at GDS level



Examples:

- Investigation of filtering characteristics
- Transmission simulation of a circuit
- Integration of Material models in PDK and components S-matrices




D. Design and validation with Nazca-Design

Tape-out of MASSTART inter- and intra- Data Center PICs

Thank you!

Contact: info@BrightPhotonics.eu

Supply chain development
 PIC concepts & IP blocks
 Prototyping & Design

MASSTART team: Marco Passoni Katarzyna Ławniczuk Ronald Broeke

Acknowledgement

Co-funded by the Horizon 2020

Framework Programme of the European Union

MASSTART project is co-funded by the Horizon 2020 Framework Programme of the European Union with Grant Agreement Nr. 825109. https://cordis.europa.eu/project/rcn/219912/factsheet/en

MASSTART project is an initiative of the **Photonics Public Private Partnership** <u>www.photonics21.org</u>

#Photonics@Photonics21@PhotonicsEU#H2020

Disclaimer: The information, documentation and figures available in this deliverable are written by the MASSTART Consortium Partners under co-funding by Horizon 2020 Framework Programme of the European Union (Grant agreement ID: 825109) and do not necessarily reflect the view of the European Commission. The information in this document is provided "as is", and no guarantee or warranty is given that the information is fit for any particular purpose. The reader uses the information at his/her sole risk and liability.

Copyright © 2020 the MASSTART Consortium. All rights reserved. This document may not be copied, reproduced or modified in whole or in part for any purpose without written permission from the MASSTART Consortium. In addition to such written permission to copy, reproduce or modify this document in whole or part, an acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced.

MASSTART Consortium

Data Center Interconnects - Towards Mass Manufacturing, 6th October 2020

