October 4th - 7th | 2021

#### PHOTONICS DAYS Berlin Brandenburg

innovation conference

Tektronix

#### Accelerating Transceiver Characterization and Verification

Presenter: Dr. Ali Emsia



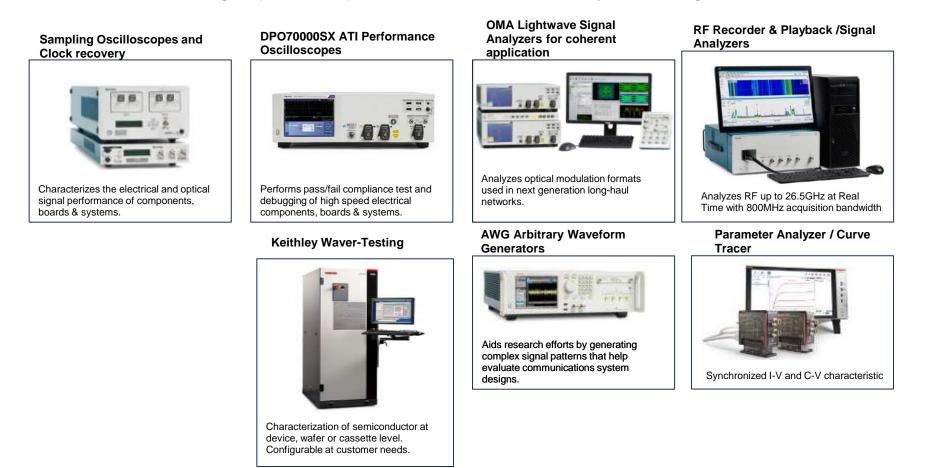


## **Tektronix High-End Solutions Overview**

## **Tektronix**<sup>®</sup>

- Tektronix is a leading T&M company serving engineering and technical professionals
- Founded in 1946, acquired by Danaher in 2007, 2016 a Fortive company
- Headquartered in Beaverton, Oregon
- Leadership positions in key products and markets
- Highly-respected brand based on high quality innovative products, engineering excellence and global service and support
- Award winning:
  - Oscilloscopes
  - Signal Sources
  - Spectrum Analyzers



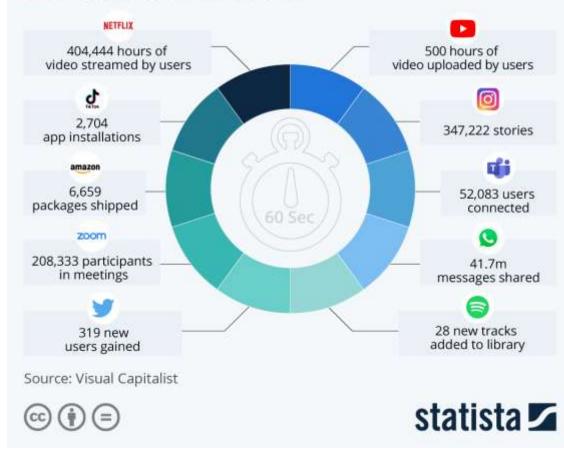

- Keithley is a leader in precision electrical test
- Founded in 1946, acquired by Tektronix in 2010
- Headquartered in Solon, OH
- Offering instruments and systems to meet any measurement requirement from nanovolts to gigahertz
- 21 R&D 100 awards as well as honors from Semiconductor International, Solid State Technology, Electronic Products, Test & Measurement World magazines



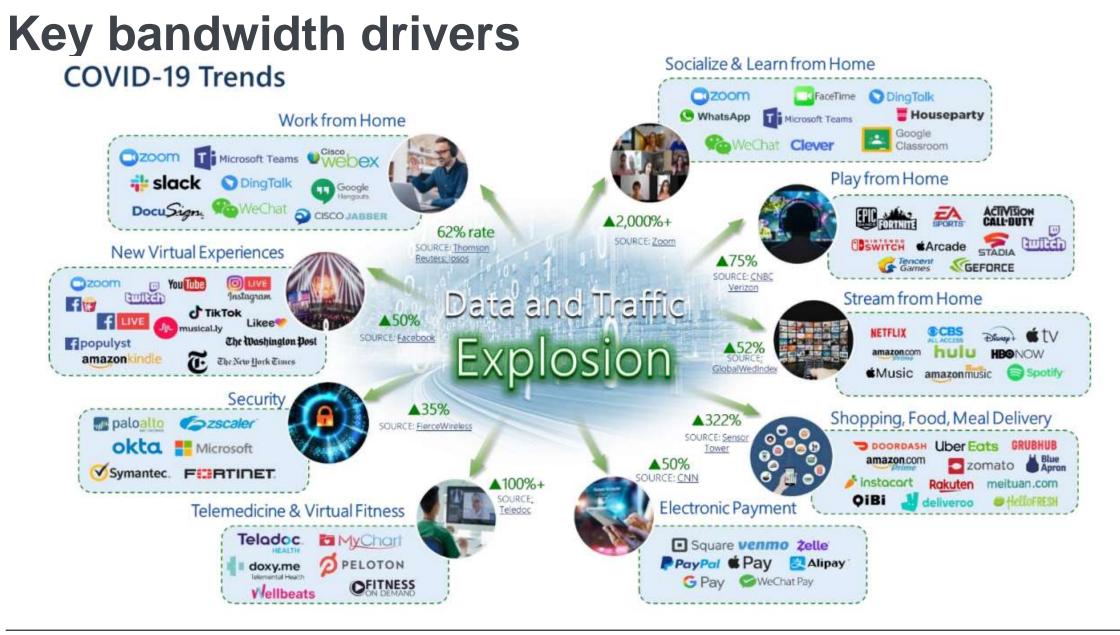


## **Tektronix High-End Solutions Overview**

• Tektronix simplifies serial standards testing complexity with measurement expertise and tools that provide accurate test results for high-speed computer and communications system designs



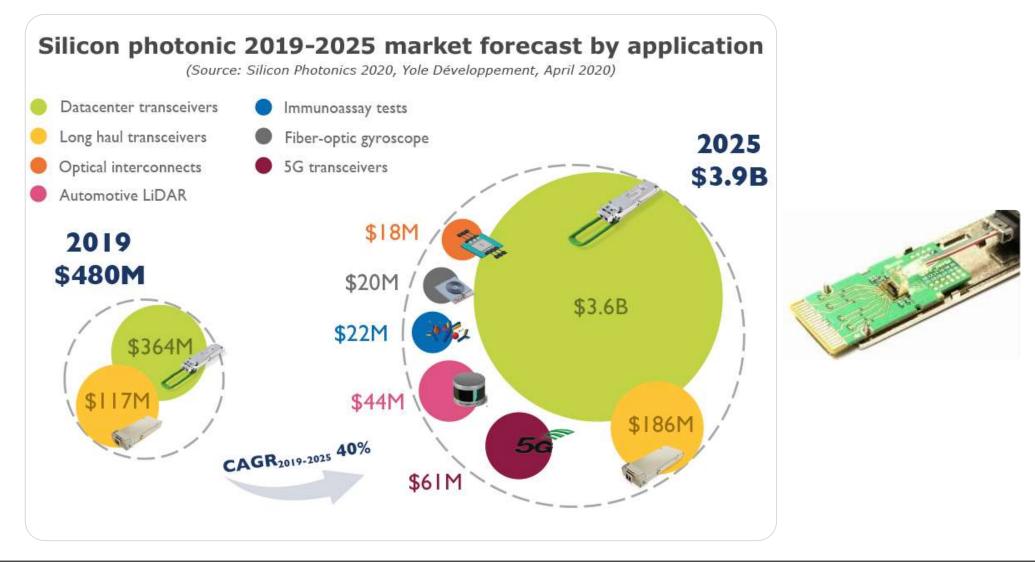




## **Key bandwidth drivers**

#### A Minute on the Internet in 2020

Estimated amount of data created on the internet in one minute







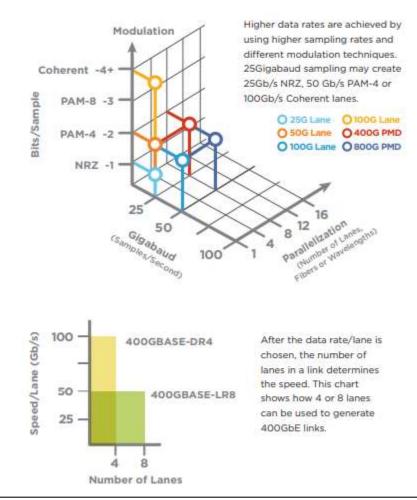





## **Market Growth**








## Keeping up with bandwidth demand

How to overcome increasing bandwidth demand

- ✓ More complex modulations
  ✓ NRZ PAM4 QAM
- ✓ More channels
- ✓ Higher baud rates









## What's new in Ethernet standards?



|          |   |                      | el                           | ectrical  |                      |                  | optical            |                 |                        |              |              |  |  |  |  |  |  |  |  |
|----------|---|----------------------|------------------------------|-----------|----------------------|------------------|--------------------|-----------------|------------------------|--------------|--------------|--|--|--|--|--|--|--|--|
|          |   |                      | Electrical<br>Interface      | Backplane | Twinax<br>Cable      | Twisted<br>Pairs | MMF                | Parallel<br>SMF | 2km<br>SMF             | 10km<br>SMF  | 40km<br>SMF  |  |  |  |  |  |  |  |  |
| 1983 —   |   | 10BASE-              |                              |           |                      | т                |                    |                 |                        |              |              |  |  |  |  |  |  |  |  |
| 1995 — — |   | 100BASE-             |                              |           |                      | тх               | FX                 |                 |                        | LX           |              |  |  |  |  |  |  |  |  |
| 1998 — — |   | 1000BASE-            |                              | КХ        | сх                   | т                | SX                 |                 |                        | LX           |              |  |  |  |  |  |  |  |  |
| l r      |   | 2.5GBASE-            |                              | КХ        |                      | т                |                    |                 |                        |              |              |  |  |  |  |  |  |  |  |
|          |   | 5GBASE-              |                              | KR        |                      | т                |                    |                 |                        |              |              |  |  |  |  |  |  |  |  |
| 2002 —   |   | 10GBASE-             | SFI, XFI<br>XSBI, XAUI       | KX4, KR   | CX4<br>SFP+DAC       | т                | SR                 |                 |                        | LR           | ER           |  |  |  |  |  |  |  |  |
|          |   | 25GBASE-             | 25GAUI                       | KR        | CR                   | т                | SR                 |                 |                        | LR           | ER           |  |  |  |  |  |  |  |  |
| 2010 —   | _ | 40GBASE-             | XLAUI                        | KR4       | CR4                  | т                | SR4                |                 | FR                     | LR4          | ER4          |  |  |  |  |  |  |  |  |
| 2017     |   | 50GBASE-             | 50GAUI<br>50GAUI -2          | KR, KR2   | CR, CR2              |                  | SR                 |                 | FR                     | LR           |              |  |  |  |  |  |  |  |  |
| 2019     |   | 100GBASE-            | CAUI10<br>CAUI4<br>100GAUI-2 | KR4, KR2  | CR10,<br>CR4,<br>CR2 |                  | SR10<br>SR4<br>SR2 | PSM4<br>DR      | 10X10<br>CWDM4<br>CLR4 | LR4<br>10X10 | ER4<br>10X10 |  |  |  |  |  |  |  |  |
|          |   | 200GBASE-            | 200GAUI-4<br>200GAUI-8       | KR4       | CR4                  |                  | SR4                | DR4             | FR4                    | LR4          |              |  |  |  |  |  |  |  |  |
|          |   | 400GBASE-            | 400GAUI-16<br>400GAUI-8      |           |                      |                  | SR16               | DR4             | FR8                    | LR8          |              |  |  |  |  |  |  |  |  |
| 2023 —   |   | 800GBASE /<br>1.6TbE |                              |           |                      |                  |                    |                 |                        |              |              |  |  |  |  |  |  |  |  |





ontion

## Pushing the envelope to higher baud rates

Impact on optical transceiver Testing

- Increase in complexity
- Steady uptick in test requirements
- Increase time device spends on the manufacturing floor





## **Contrast Between PAM-4 and NRZ**

- PAM4 Measurements
  - Transmitter and dispersion eye closure quaternary (TDECQ)
- NRZ Measurements
  - Tx Eye Mask

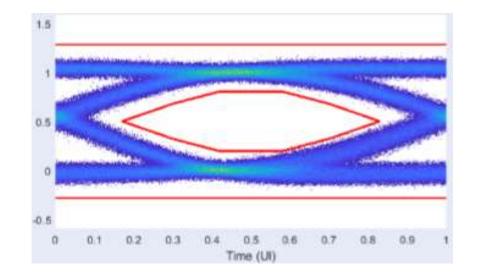
- Outer Optical Modulation Amplitude (OMA<sub>outer</sub>)
- Optical Modulation Amplitude (OMA)

Outer Extinction Ratio (OER)



• Level separation mismatch ratio (RLM)

## **Contrast Between PAM-4 and NRZ**


#### PAM4 TDECQ

 Measures each of the optical transmitter's vertical eye closure as measured through and optical to electrical converter.

$$TDECQ = 10\log_{10}\left(\frac{OMA_{outer}}{6} \times \frac{1}{Q_{t}R}\right)$$

#### NRZ Eye Mask

 Measures the number of hits on a mask to characterize the BER of a transmitter.



#### **Cost of Test for optical transceivers**

|                 | Test station cost [\$k] |     |                         |    |    |  |  |  |  |  |  |  |  |  |  |
|-----------------|-------------------------|-----|-------------------------|----|----|--|--|--|--|--|--|--|--|--|--|
| Test Time [min] | 150                     | 125 | 100                     | 75 | 50 |  |  |  |  |  |  |  |  |  |  |
| 120             |                         |     |                         |    |    |  |  |  |  |  |  |  |  |  |  |
| 90              |                         |     |                         |    |    |  |  |  |  |  |  |  |  |  |  |
| 60              |                         |     |                         |    |    |  |  |  |  |  |  |  |  |  |  |
| 30              |                         |     |                         |    |    |  |  |  |  |  |  |  |  |  |  |
| 15              |                         |     |                         |    |    |  |  |  |  |  |  |  |  |  |  |
|                 |                         | C   | Cost of test per device | 9  |    |  |  |  |  |  |  |  |  |  |  |



## Why is Test time so important?



#### Go to market faster



Significantly reduce cost of device



Increase throughput / reduce capital expenses



Meet customer demand





### Impact of Machine Learning in optical communication

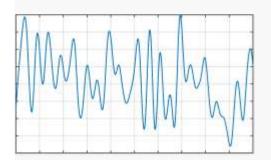
Machine learning has recently seen significant popularity in optical communication with respect to applications such as:

- Optical Performance Monitoring
- Failure and Fault Management

due to its ability to efficiently model systems using abstract inputs.

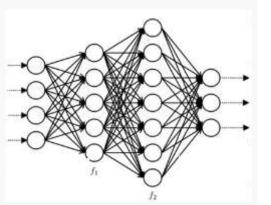
To cope with high cost and to address reliability concerns, Machine Learning must be explored in this environment to assist testing and provide additional device insight.

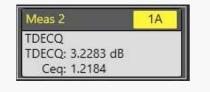





## Machine Learning TDECQ

#### UTILIZING MACHINE LEARNING TO SPEED UP TDECQ MEASUREMENT


#### Input:


 Waveform data acquired from scope



#### Analysis:

 Trained convolutional neural network (CNN)





TDECQ measurement

Output:

TDECQ Computation speed improvement of 20X





TSOVu ™

| File                                      | Connect    | t    | Utility    | Help    |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          | Te                  | ktro  | onix            |                 |
|-------------------------------------------|------------|------|------------|---------|--------|-------|---------|-----------|---------|------|------------------|----------|--------|----|------------|----------|---------|------------|---------|----------|-------------|-----|------------|----------|-------|-------|-----|-------|----------|--------|-------------------|----------|----------|------------------|---------|----------|---------------------|-------|-----------------|-----------------|
| Raw Eye                                   | - Meas 2   | 2    |            |         |        |       |         |           |         |      |                  |          |        |    |            |          | ×E      | qualiz     | ed Eye  | e - Me   | eas 2       |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     | ×     | Ac              | d New           |
| Ę                                         |            | 111  |            |         |        |       |         |           |         |      | ·                |          |        |    | 2000       |          | Ē       |            | 1       |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         | •  <br>* |                     |       | Cursor          | Note            |
| En e e                                    |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          | -1 년    |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     | -1 U  |                 |                 |
|                                           |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          | -2 10   |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     | -2 U- | Measure         |                 |
|                                           |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     |       | Mask            | Result<br>Table |
| <br>E                                     |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          | -3 U    |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     | -3 U  | Meas 1          | 14              |
| n<br>Na a a i                             |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          | -4 U    |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     | -4 U  | PAM4 Sum        | mary            |
|                                           |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     | 5-U   |                 |                 |
|                                           |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          | -3:0    |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     |       | Meas 2<br>TDECQ | 1A              |
| 1-0 4 7 1<br>1                            |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          | -6 년    |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     | -6 U  | TDECQ:          |                 |
|                                           |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          | -7 10-  |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     | -7 년- | Ceq:            |                 |
|                                           |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     |       |                 |                 |
| En an |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          | -8 U    |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     | -8 U  |                 |                 |
| -<br>                                     |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          | -9 U    |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     | -9 U  |                 |                 |
|                                           | -4 s       | -3 : |            | -2 s    | -1.    | 5     | 0 s     |           | 115     |      | 2 <sub>1</sub> s |          | 315    |    | 415        |          |         |            | -4 s    |          | -3 s        |     | -2 s       |          | -     | l s   |     | 015   |          | 1.5    |                   | 215      |          | 315              |         | 415      |                     |       |                 |                 |
| Wavefor                                   | m View     |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     | 1     |                 |                 |
| ł                                         |            |      |            | ÷       |        | 140   | 1       |           |         | 1    |                  |          | 4.4    | 1  |            |          |         |            |         |          |             | 1   |            |          |       |       | , i |       |          |        |                   |          |          |                  | N.      | -210     | 888:                | 2     |                 |                 |
|                                           |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          | i       |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     |       |                 |                 |
| - <u>1</u> A>                             |            |      | 9_ns       |         | 142.35 |       |         |           | 204,037 | os.: |                  | 2        | 65.716 | ns | . <u>.</u> | i)       | 327.395 | ne         | <u></u> | <u></u>  | 389.074     | D\$ | . <u>.</u> | <u>.</u> | 450,7 | 53 ns |     | ····· |          | 2432 0 | å                 | <u>.</u> |          | 74.JJ2.          | ns      |          | <b>?</b> <u>4</u> 5 |       |                 |                 |
| Horizonta                                 | al Zoom So | cale | 308.329 ps | /div    |        | - (20 | 00.043x | zoom)     |         | -    |                  |          |        |    |            |          | _       |            |         | ŝ        |             | -   |            |          |       |       |     |       |          |        |                   |          | ž        |                  |         |          |                     | ×     |                 |                 |
| ti di                                     |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          | 1.106               | 6 mW  |                 |                 |
| 16 - 31<br>-                              |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          |                     | .2 μW |                 |                 |
|                                           |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          | 860.                | .3 µW |                 |                 |
| 15 IS                                     |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          | 737.                | .4 μW |                 |                 |
|                                           |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          | 614.                | .5 µW |                 |                 |
|                                           |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          | 491.                | .6 µW |                 |                 |
|                                           |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          | 368.                | .7 µW |                 |                 |
| x = x                                     |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  | × .     |          | 245.                | .8 µW |                 | 1351            |
|                                           |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       |          |        |                   |          |          |                  |         |          | 122.                | .9 µW | Clear           | Ø               |
| - 1A)                                     | 233.046    |      |            |         |        |       |         | 33.663 ns |         |      |                  | 3.971 ns |        |    |            | 34.28 ns |         |            |         | 34.588 n |             |     | ;          | 234.896  |       |       |     |       | 05 ns    |        |                   |          | 5.513 ns |                  |         |          | 235.821 n           |       | Autoset         |                 |
| M1: TSO8                                  |            | o ns |            | 233.355 | > ns   |       | 2:      | s3.663 hs |         |      | 23               | 3.9/1 hs |        |    | 2          | 54.28 ns |         |            | 23      | 54.588 n | 5           |     |            | :54.896  | ns    |       |     | 235.4 | ios ns   |        | lorizon           | 1        |          |                  |         |          | -                   |       |                 |                 |
|                                           | .9 µW/div  |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       | Ad       | d 6    | 1.679 r           | ns/div   | 0        | rigger<br>lock P | rescale | 2        | Acquisi<br>Sample   | e     |                 | Stopped         |
| <b>1B</b> 350                             |            |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         |            |         |          |             |     |            |          |       |       |     |       | Ne<br>Re | W 5    | 3.125 (<br>2767 S | GBd      | 1        | 3.282            | GHz     | 1        | 0 Acqs              |       |                 |                 |
|                                           | _          |      |            |         |        |       |         |           |         |      |                  |          |        |    |            |          |         | <u>RON</u> | IX C    |          | <b>FIDE</b> |     | AL         |          |       |       |     |       | L.       |        |                   | ,        |          |                  | _       |          | _                   | _     | 0               |                 |

#